使用匹配分数演变个性化建议

对于大多数买家来说,寻找一个梦想家是一个艰巨的任务。在Realtor.com,我们使用称为“匹配分数”的系统帮助用户在旅程中,从用户的角度来看,评估任何家庭的相对重要性。用户的匹配得分是从用户搜索历史推断出来的各种功能,例如平均房屋价格,床,浴室和批量平方英尺。由于用户与Realtor.com上的Homes进行交互,因此分数是实时计算的,这将估计用户对特定家庭的偏好。

匹配分数是一款通用个性化模型,可用于个性化网站的许多方面。例如,类似的家庭是Realtor.com上突出的机器学习模块,使用户能够找到与他们正在寻找的房屋类似的家庭。类似的家庭机器学习模型推荐类似房屋现在将为每个用户使用匹配分数个性化。匹配分数还将推动通知系统对每个用户的潜在候选家庭排名。

您可能希望收到市场上个性化最佳家园的通知!

机器学习项目的生命周期始终迭代以收集数据,火车和服务模型。在这个博客文章中,我们描述了最终的设计和实施匹配分数,沿途面临的挑战。

继续阅读 “使用匹配分数演变个性化建议”

用户行为配置文件作为ML特征存储中的构建块

房地产个性化服务为家庭购买经验的不同阶段提供个性化房地产内容。个性化服务的主要步骤之一是了解客户。

机器学习(ML)在构建个性化服务方面发挥着重要作用。我们在不同的组件中使用许多ML模型,例如个性化建议,个性化搜索和智能标记来命名几个。

开发任何ML应用程序和模型中最重要的步骤之一是特征工程。这一步在高质量的结果中起着重要作用。在此阶段,将原始数据清除并转换为ML模型可以理解的功能。高质量的功能意味着业务在客户参与和货币化等不同阶段获得更好的结果。

任何个性化服务中使用的基本功能之一是与用户相关的行为功能。这类功能是在Realtor.com的用户与我们的服务互动的演示。在这篇文章中,我们将解释我们在不同型号中使用的重要特征和行为。这是特征存储中最重要的组件之一,我们收集并管理不同个性化服务的重要消费类功能。

继续阅读 “用户行为配置文件作为ML特征存储中的构建块”